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ABSTRACT

This paper presents a novel approach for user positioning, robust
tracking and online 3D mapping for outdoor augmented reality ap-
plications. As coarse user pose obtained from GPS and orienta-
tion sensors is not sufficient for augmented reality applications,
sub-meter accurate user pose is then estimated by a one-step sil-
houette matching approach. Silhouette matching of the rendered
3D model and camera data is carried out with shape context de-
scriptors as they are invariant to translation, scale and rotational
errors, giving rise to a non-iterative registration approach. Once
the user is correctly positioned, further tracking is carried out with
camera data alone. Drifts associated with vision based approaches
are minimized by combining different feature modalities. Robust
visual tracking is maintained by fusing frame-to-frame and model-
to-frame feature matches. Frame-to-frame tracking is accomplished
with corner matching while edges are used for model-to-frame reg-
istration. Results from individual feature tracker are fused using a
pose estimate obtained from an extended Kalman filter (EKF) and a
weighted M-estimator. In scenarios where dense 3D models of the
environment are not available, online 3D incremental mapping and
tracking is proposed to track the user in unprepared environments.
Incremental mapping prepares the 3D point cloud of the outdoor
environment for tracking.
Keywords: Augmented reality, user positioning, robust tracking,
shape matching, 3D mapping, sensor fusion.

Index Terms: H.5.1 [Information Systems]: Multimedia Infor-
mation Systems—Augmented Reality; I.4.8 [Image Processing and
Computer Vision ]: Scene Analysis—Sensor Fusion, Tracking;

1 INTRODUCTION

Outdoor augmented reality (OAR) combines the user’s view of the
real world with context specific information, such as text, images
and 3D graphics.

The most important aspect of the OAR system is to identify the
location and orientation of the user to retrieve the context so as to
present him/her with context-aware information, thereby enhanc-
ing the user’s awareness of the environment. These systems must
run interactively and in real time to enhance the situational aware-
ness. Accurate estimation of camera position and orientation in a
global space is the most important aspect to provide such augmen-
tation. Lack of accuracy can cause complete failure of coexistence
of real and virtual worlds. In OAR systems, instantaneous 6-DoF
user localization is generally achieved with position and orientation
sensors such as GPS and gyroscopes. Initial pose obtained with
these sensors is dominated by large positional errors due to coarse
granularity of GPS data. Subsequent tracking is also erroneous as
gyroscopes are prone to drifts and often need recalibration. In some
applications accuracy of these devices may be adequate, whereas in
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Figure 1: First Column: GPS and inertial sensors provide 6-DoF
coarse estimate of the camera in outdoor environments (top). Non-
iterative model-based shape matching approach is proposed to mit-
igate localization errors (bottom). Second Column: Feature based
visual tracking causes accumulation of errors over time resulting in
drifts of camera pose (top). Combined feature point and edge track-
ing reduces drift in pose estimation (bottom). Third Column: Dense
modeling of the ever changing ourdoor environment is difficult and
pose estimation should adapt to those dynamics. Extensible user
tracking takes over as user moves from modelled environment (top)
to non-modelled area (bottom). Virtual tree is augmented to illustrate
the mapping and tracking.

others it is less than desired for true visual merging. Vision tech-
niques are normally employed to mitigate sensor errors for accurate
user localization and tracking in urban environments.

To overcome the practical limitations of different modalities in
the context of outdoor environments, hybrid approaches are nor-
mally employed. These hybrid systems utilize data from position
and orientation sensors as a rough estimate of the camera pose
while vision technique refines it further. This paper presents one
such novel hybrid model-based approach for outdoor mixed real-
ity applications in which fine user positioning, robust tracking and
mapping of the environment is achieved as illustrated in Fig. 1.

We propose a non-iterative model-based user positioning ap-
proach for OAR. The proposed one-step approach avoids costly
rendering of the model at each iteration, hence minimizing ini-
tialization delay. Such automatic, accurate and fast initialization
is necessary for practical OAR applications. The approach uses
a contour/shape matching approach to obtain global camera pose.
Coarse pose obtained from the system’s sensors is refined by match-
ing silhouettes of model data to the camera data (Fig. 1). Silhou-
ettes obtained from the model and image data are parameterized and
matched using shape context (SC) descriptors [3] as they are found
to be the best non-parametric edge descriptors for 3D object match-
ing [17]. These descriptors are invariant to translation, scale and
rotational errors, which is very desirable for automatic alignment
as coarse pose estimates are often dominated by large positional
errors due to coarse granularity of GPS data. Final refined pose
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is obtained by constrained, reweighted Levenberg-Marquardt (LM)
optimization (Section 3).

After localization, an extended Kalman filter (EKF) of constant
velocity model is initialized and the system switches to tracking
mode. In our system, further tracking is carried out with a pure
vision based approach, as position/orientation sensors are employed
during initialization and recovering from tracking failures only.

Once initialized, model-based tracking is carried out based on
visual cues alone. Vision based sequential tracking approaches in-
troduce drifts over time due to issues such as inaccuracies associ-
ated with camera calibration and feature tracking. The drifts are
even more pronounced when the objects are poorly textured and
occluded. This scenario is often exhibited in an urban context as
buildings are homogeneous, poorly textured, often occluded by ob-
jects such as trees and vehicles. Keyframe based approaches offset
the tracking drifts by periodically tracking with respect to refer-
ence frames which are obtained a priori or generated on the fly.
Such keyframe based approaches are computationally demanding.
In this paper we present a robust, keyframe-less sequential cam-
era tracking approach for OAR. Our proposed approach achieves
robust tracking by combining frame-to-frame and model-to-frame
feature matches. Model-to-frame edge matching serves as a feed-
back mechanism to correct the drifts associated with camera track-
ing at each frame, thereby minimizing drifts from escalating over
time. These different feature matches are appropriately weighted
and fused using the M-estimator with the camera pose predicted
from an EKF. A system of equations is then solved for camera pose
by weighted least-squares (Section 4).

3D model generation of large outdoor environments is a research
challenge. The complexity of the problem increases depending
on the details that need to be modelled. Fully automatic, semi-
automatic and manual modelling techniques are often employed
depending on the required accuracy. The bigger challenge lies
in maintaining these virtual models as real environments are dy-
namic and models also need to be dynamically updated to reflect
the changes in the real environments. To adapt to these changes
and do user tracking without prior knowledge, a model-free camera
tracking approach is proposed in this paper. Such approaches are
widely known in literature as extensible tracking [5, 7, 15, 16], in
which the system extends its initial map by adding the new points,
which are then later used for tracking in unprepared environments.
In these approaches, the mapping of the environment is simultane-
ously carried out when model-based tracking is in progress. These
mapping-while-tracking approaches can be broadly classified into
two groups: keyframe based vs. incremental. Keyframe based ap-
proaches [15] employ a rigorous bundle adjustment (BA) to map the
points robustly whereas incremental approaches do the mapping at
each frame and are not robust. Incremental tracking approaches,
also known as filtering or SLAM (simultaneous localization and
mapping), achieve robustness by employing recursive refinement of
3D maps [5, 7]. An excellent analysis of both these approaches is
presented in [25], where authors conclude that filter based SLAM
frameworks are beneficial if small processing budget is available,
however, BA optimization is superior elsewhere.

We employ a computationally light incremental mapping ap-
proach for resource poor OAR systems. Robustness is then intro-
duced by fusing keypoints and edge tracking on visual data. We
map the points incrementally at each frame as the user ventures into
the non-modelled environment. Due to finite storage limitations on
mobile devices, only features active in the current camera view are
maintained and the rest are culled. Here we are looking at a par-
ticular scenario where the user explores the new regions without
returning. The list of mapped features is refreshed from frame-to-
frame (Section 5).

The results of user positioning, robust tracking and mapping are
presented in Section 6. Limitations of the proposed system and

further improvements are discussed in Section 7. The conclusion
and future scope is outlined in Section 8.

2 RELATED WORK

Many approaches ranging from sensor-based to pure vision based
to hybrid ones have been proposed for outdoor augmented reality
applications.

2.1 Initialization
Pure vision based techniques such as [2, 9, 13, 26] do image based
object recognition to localize and track the users in outdoor en-
vironments. The user context in these approaches is acquired by
querying the image database of labeled objects. On the other hand,
hybrid approaches fuse data from different sensors such as camera,
GPS and gyroscopes. In these hybrid approaches, the 3D georef-
erenced graphical models of the target serve as a context. Early
work in model based automatic initialization is reported in [23].
The approach does model based automatic landmark detection and
matching for rotational errors only. The approach presented in [21]
does successive approximation of GPS data and edge tracking to
converge to the correct pose, at the cost of initialization delay.

2.2 Tracking and Mapping
Assuming initializing, different hybrid approaches for tracking only
are proposed in the literature. These hybrid tracking approaches
mainly differ based on which natural features are used by the vision
technique for tracking purposes. Approaches presented in [14, 29]
use lines, [12, 20] are edge based while [1, 11, 24] use corners for
tracking.

Inertial sensors suffer from drifts over long time and often need
recalibration. Vision based sequential tracking approaches also suf-
fer from drifts, normally arising due to inaccurate camera calibra-
tion, occlusion, incomplete or partial data, or limitation associated
with different features itself. To achieve drift-free and robust track-
ing for longer sequences, keyframes or combined feature tracking is
normally employed. Keyframe based tracking for unprepared envi-
ronment is not feasible. A general solution for drift-free tracking is
to combine multiple features such as corners and edges as proposed
in [8, 4, 19, 22]. These approaches rectify errors associated with
corner tracking by fusing edge matches, which serves as a feedback
to minimize drifts.

To enable tracking in unprepared environments, many ap-
proaches for simultaneous tracking and mapping are proposed
[5, 7, 15, 16, 24]. Approaches proposed in [5, 7, 15] are meant for
small indoor AR workspaces to confine the mapping. In these ap-
proaches, initial 3D maps are further refined recursively or through
bundle adjustments to achieve the robustness. An extensible track-
ing approach meant for mobile devices is proposed in [16], which is
basically an adaptation of [15] for camera phones. However, these
approaches are meant for small AR workspaces, and exploratory
tasks such as OAR are not supported. The approach proposed in
[24] is meant for outdoor AR and basically does the mapping to
compensate for the drifts associated with inertial/magnetic sensors.

3 USER POSITIONING WITH SHAPE CONTEXT DESCRIPTOR

In this section, we outline a novel model-based, non-iterative ap-
proach for automatic user positioning in urban environments. The
coarse pose estimates obtained from the GPS and gyroscope are
used to render the georeferenced graphical model. The silhouette
of the rendered model is then extracted by thresholding. Without
loss of generality, we assume that the texture-less, georeferenced
models of the environment are available. Given resource scarcity
on mobile devices, such models are more desirable as they take less
disk space and are fast to render.

Extraction of the building silhouette from the camera image is
more challenging. In indoor applications, object silhouettes are
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generally extracted by ”background” subtraction. Such a typical
background is difficult to define and subtract in outdoor cases. The
level-set based segmentation approach of [18] is computationally
heavy and may still produce a distorted silhouette due to the oc-
clusion of the target by trees, or the presence of ground plane or
otherwise. To obtain meaningful data from the camera image, we
segmented the image into sky and non-sky regions using a flood
filling algorithm. The silhouette is then obtained by thresholding
the mask, which contains the partial outline of the building and ex-
tra clutter. The silhouette/outline obtained from the image is the
only available feature to match and refine the camera pose as other
features such as edges tend to get cluttered due to large viewing
distances. Reliable alignment is then achieved by matching the ap-
pearance of the model silhouette to the image outline. Fig. 2(b)
illustrates the outline/silhouette extracted from the model and im-
age for different initial poses.

With limited feature choices, model-based hybrid initialization
with low level features is extremely challenging. Contour attributes
such as gradient and curvature at different points can be used for
possible matching purposes. Such attributes are of limited use in
an urban environment where structures are predominantly cuboids
in shape, which gives rise to straight lines in rendered images. It-
erative closest point (ICP) [30] and distance transform (DT) based
registrations also tend to get stuck in local minima and hence can
be inappropriate for global localization.

Another alternative for contour matching is then to prototype the
appearance of the contour obtained from the rendered model and
match it in the camera data. One such prototyping of contours is
proposed in [3] by the shape context (SC) descriptor. The descrip-
tor characterizes a particular contour point with respect to all other
contour points. These points are randomly sampled from the con-
tour shape. Relative distances, angles and normalization make the
shape context descriptor invariant to translation, rotation and scale
respectively. Once model and image contours are parameterized
with shape descriptors, one-to-one sample point correspondences
are established (see Fig. 2(b)).

3.1 Silhouette Matching
Assume that the set, P = {p1, . . . , pn}, pi ∈ R2, of n points repre-
sents the points on shape obtained from the model. Similarly, the
set Q = {q1, . . . ,qm}, qi ∈ R2, of m samples represents the points on
shape obtained from the image (Fig. 2(b)). Estimation of the align-
ment transform and registration is done by finding point matches
using shape context as corresponding points on two similar shapes
will have a similar shape context. For each point pi from model
contour the best possible matching point q j from the image contour
is obtained. The local cost of matching a point pi to a point q j is
denoted as Ci j = C(pi,q j). As shape contexts are distributions rep-
resented as histograms, the matching cost is obtained with χ2 test
statistic.

Forward matching (from model-to-image) of corresponding
shapes is done by minimizing the shape context cost for each point
pi on model contour P to points q j on image contour Q as,

C(P,Q) =
n

∑
i=1

min
j

C(pi,q j). (1)

Normally, the number of silhouette points n of model contour
and m of image contour are different, giving rise to undesirable
effects such as many-to-one matches or false matches. To obtain
the unique correspondences, we employ the bidirectional tracking
for matching silhouettes as,

CBT (P,Q) =
1
2
[C(P,Q)+C(Q,P)]. (2)

The results of bidirectional tracking are illustrated in Fig. 2(b)
which gives unique matches. However, point matching based on

shape context descriptor alone is not sufficient for reliable corre-
spondences, especially in situations where extra clutter and/or par-
tial shape data are encountered. Rigid registration based on these
matches is infeasible as:

1. Shape context descriptors are defined with respect to all other
contour points and partial information or extra information
could change the distribution of points and hence the descrip-
tors. This is normally the case for OAR as non-modeled el-
ements such as pedestrians, vehicles, lamp-posts and trees
could be present in camera data, giving rise to extra clutter
as well as occluding the desired target.

2. Points which are close to each other on the model shape are
often matched to points which are far away from each other
on the image shape.

3. Iterative matching and registration can be employed to com-
pensate these shortcomings but that means rendering and ex-
tracting the model shape many times which is costly in terms
of computational power and delay in initialization.

Fig. 2(b) demonstrates the shape context based matching, where
some model shape points are matched to the points from clutter.

The robustness of shape context based registration is then in-
creased by introducing a figural continuity constraint proposed by
[27]. The constraint states that, the two neighboring points on the
model shape P should match to nearby points on the target shape Q.
However, this constraint needs points on the model shape to be or-
dered. Once ordering of points pi is done by using chain codes,
neighboring matches are subjected to the figural continuity con-
straint. Point pairs not obeying the constraint are examined and cor-
respondence having more matching error from the pair is detected
as an outlier and excluded from pose calculations. The results of
the figural continuity constraint are demonstrated in Fig. 2(b) in
which the point matches not obeying the constraint are marked as
red. From the remaining correct matches, camera pose is obtained
by the constrained, weighted LM algorithm as described below.

3.2 Pose Estimation
To register the 3D model to the image, the world transformation
T ∈ SE(3) which is parameterized by a 6-dimensional vector ξ =
{θx,θy,θz, tx, ty, tz} ∈ R6 is obtained. The pose is estimated such
that it minimizes the residual error ri, that is

ξ = argmin
ξ

∑
i

r2
i . (3)

Expressed in matrix form as

ξ = argmin
ξ

‖f(ξ )−b‖2 (4)

where b is a vector made of measurements obtained from Eq. 2 and
f is a function that relates the camera pose to these measurements.
The non-linear set of equations is then solved using an iterative
Levenberg-Marquardt (LM) algorithm as:

ξi+1 = ξi +∆i

and step ∆i is computed as:

∆i =−(JT J +λ I)−1JT
εi (5)

where J is the Jacobian matrix of f computed at ξi and εi = f(ξi)−b
denotes the residual at iteration i. Results of pose estimation using
LM algorithm are illustrated in Fig. 2(c). The values obtained for ξ

are plotted in Fig. 3. The estimated camera pose ξ has large values
for angle and translation parameters. The cause of misalignment

177



(a) Coarse camera pose (b) SC matching (c) LM (d) CLM (e) WCLM

Figure 2: Illustration of coarse-to-fine user positioning: (a) Initial sensor estimates are used to render the georeferenced model; (b) Silhouettes
are extracted from image (blue) and model (red) to do matching with shape context (SC) descriptor. Green point matches represent the correct
matches while red ones are outliers; Final user pose is obtained with: (c) unconstrained LM algorithm; (d) constrained LM (CLM) algorithm; and
(e) weighted, constrained LM (WCLM) algorithm.

was the presence of outliers which were still present even after im-
posing the figural continuity constraint. Such outliers can not be
totally avoided due to presence of occlusion and extra data.

We can decrease the influence of outliers if they cannot be to-
tally avoided by imposing an extra constraint on the estimated
value of ξ . Normally, accurate user position is in vicinity of the
coarse camera pose. Accuracy of GPS data in urban environ-
ment is typically within 5− 10 meters. Further parameterization
of the GPS error with Guassian distribution has been reported in
[21], where they found that the error has the standard deviation
σ = (1.9m,4.3m) in east-west and north-south direction respec-
tively. To be able to initialize with high likelihood, the exact user
position could be anywhere in an area encapsulated by an ellipse
of 3σ = (5.7m,12.9m) around the reported GPS location. Assum-
ing isotropic errors in both directions, the worst case user position
could be (±15m,±15m) from the coarse GPS location. Similarly,
worst case errors for orientation data in pitch, yaw and roll are as-
sumed to be (±15o,±15o,±15o) in X , Y and Z direction respec-
tively. With these bounds, the results of the constrained LM (CLM)
optimization are given in Fig. 2(d) and 3. While the results are
within bounds and very near to the desired camera pose, effects of
outliers are still visible.

As observed, the least squares formulation is very sensitive to
outliers. To subsidize the impact of outliers on the final pose esti-
mation, we employ M-Estimators. Instead of minimizing Eqn. 3,
one can minimize its robust version,

∑
i

ρ(ri) (6)

where ρ is an M-estimator that reduces the influence of outliers
[31]. Effect of M-estimators is incorporated into minimization by
simply weighting the residuals ri with weight ωi. The matrix W can
be taken as W = diag(. . .ωi . . .). In case of LM estimation scheme,
modified ∆i is computed as:

∆i =−(JTWJ +λ I)−1JTWεi (7)

We have used the Huber function [31] to estimate the weights ωi.
The results of re-weighted, constrained LM optimization are illus-
trated in Fig. 2(e). Results of Fig. 3 clearly demonstrate the robust-
ness of the weighted-constrained LM (WCLM) algorithm produc-
ing the most optimal user pose.

4 COMBINED CORNER AND EDGE TRACKING

After correcting the initial camera pose, the system switches to
tracking mode. The constant velocity EKF is initialized and up-
dated at each frame which serves two purposes: one to provide
an estimate of the camera pose for the next frame to fuse feature
matches, and another to smooth out the jittering effect of track-
ing. The drifts associated with vision based tracking are well
known, which arises due to inaccurate camera calibration, pres-
ence of occlusion, incomplete or partial data. To achieve drift-free
and robust tracking for longer durations, two popular approaches
are: keyframe based tracking and combined feature tracking. In
keyframe based tracking, drifts over longer sequences are reset by
tracking periodically with respect to keyframes. Such keyframe
based approaches work well in prepared environments or for small
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Angle plots in degrees Translation in meters

Figure 3: Estimated camera poses with different LM variants. Results
corresponds to rows of Fig. 2.

workspaces. On the other hand, combined feature tracking ap-
proach is more general and equally applicable for controlled indoor
environment as well as for unprepared outdoor tracking.

In combined feature tracking approach, multiple features such as
corners and edges are fused to increase the robustness and tracking
accuracy. Corner tracking is normally performed on frame-to-frame
camera data. Similarly, edge tracking is performed on model-to-
frame data. One can further use model-to-frame corner matching
as reported in [8]. Utilizing such matching entails the use of 3D
textured models which we have avoided here to keep them simple
from a rendering point of view. Moreover, inaccurate texture stitch-
ing can lead to feature matching errors.

The frame-to-frame corner matches are denoted as CFF and
model-to-frame matches are denoted as CMF . Keypoint matches of
CFF captures the major camera motion while edge tracking of CMF
provides feedback of misalignment to correct the drifts, if any. Such
combined tracking has been successfully used for tracking articu-
lated [8] and complex rigid objects [22, 28]. An approach proposed
by [4] fuses corner and edge tracking in a unified manner. All these
approaches are proposed for indoor environments and their appli-
cation to outdoor environments is challenging.

The outdoor environment poses different challenges than con-
trolled lab environments. Most of the time, meaningful edges are
difficult to extract for feasible model-to-frame edge matching. To
provide reasonable feedback to avoid drifts in tracking, the silhou-
ette of the model is matched to the partial silhouette extracted from
camera data as discussed in Section 3. The moving edges algo-
rithm of [6] is used to obtain CMF matches while CFF matches are
obtained by using Harris corner detector and matching [10]. Fig. 4
illustrates combined tracking process.

Region based corner matching suffers from occlusion and mis-
matches arising due to repetitive structures present in man made
environments. Similarly, edge tracking suffers from the aperture
problem. The moving edges algorithm captures motion only in
the direction perpendicular to an edge while motion along the edge
is not detected. To reduce the influence of different feature track-

Figure 4: Combined feature tracking is in progress. Extracted silhou-
ette from image is overlaid in white color. Edge correspondences
obtained from model-to-frame tracking CMF are illustrated with red
color while green ones corresponds to frame-to-frame region based
corner matching CFF .

ing algorithms, matches are appropriately weighted before fusing.
Weighting is done using M-estimators. Camera pose for the cur-
rent frame is predicted from the EKF and the Huber estimator [31]
is used to generate weights. The final camera pose is predicted by
weighted least-squares system of Eq. 4.

5 INCREMENTAL MAPPING

The comprehensive 3D modelling of outdoor areas is a difficult
task. However, 3D models of some target interest areas, such as
heritage centers and tourist places, are achievable. Assuming that
such 3D models of some popular targets are available, we propose
extensible tracking for general outdoor areas of which prior knowl-
edge in the form of images/models is not available. Tracking for
unknown areas is accomplished from known targets with a simul-
taneous tracking and mapping approach. That is, normal model-
based tracking will be done as usual while simultaneous mapping
of the remaining part will be carried out from tracked information.
That way, a map of the unknown environment is maintained. When
the user explores more general areas apart from targeted ones, pre-
viously mapped data is used to track the camera. A parallel tracking
and mapping approach presented in [15] achieved fast and accurate
mapping based on keyframes while the approach of [7] does in-
cremental tracking. Both the approaches were targeted for small,
indoor AR spaces.

We adopt a computationally light and less resource demanding
incremental mapping as opposed to the keyframe one for OAR.
However, maps constructed with incremental tracking are not ro-
bust as camera tracking drifts over time. To provide robust track-
ing and mapping we fuse different features to track the camera,
similar in spirit to that of the previous section. However, in the
absence of any wireframe model of the environment, we resort to
frame-to-frame silhouette matching as opposed to model-to-frame
silhouette one. Frame-to-frame feature matches CFF now consists
of two features: one based on keypoints and other based on silhou-
ette tracking. Keypoint matching is the same as that of the previous
section while silhouette tracking is carried out with SC descriptor
matching as opposed to edge tracking to take care of aperture is-
sues. The mismatches arising from SC descriptor are avoided by
imposing extremely stringent matching threshold and confining the
search window to a small area around the contour point.

To keep the mapped data to a minimum, the interest points vis-
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ible in current view of the camera only are maintained. The list of
interest points is updated at every frame as new features are added
while non-visible ones are removed from it. Hence, at a time not
more than 1000 points are mapped and maintained.

Once camera pose from model points is obtained, the remain-
ing keypoints belonging to the non-modelled area are mapped by
minimizing forward projection errors. Projection of homogeneous
scene point X in two views are x1 = P1X, and x2 = P2X, where
projection matrix P1 and P2 are known. Forward projections of x1
and x2 are:

AX =

x1 p13− p11
y1 p13− p12
x2 p23− p21
y2 p23− p22

X = 0 (8)

where pi j is the j-th row of Pi. Non-zero solution for X is obtained
by decomposing A into SVD and retaining the vector corresponding
to smallest eigen value.

The overall algorithm for positioning, robust tracking and map-
ping is outlined below.

Algorithm:

Initialization:

1. Coarse camera pose← GPS and gyroscope

2. Extract silhouettes from image and rendered model

3. Obtain correspondences between image and model silhouettes
with bi-directional matching with shape context (SC) descrip-
tors (Eqn. 2)

4. Obtain camera pose using constrained, re-weighted LM (Eqn.
7)

5. Initialize EKF

Robust Tracking:

1. Render the model with the camera pose obtained at t−1

2. Obtain frame-to-frame matches CFF with keypoint/patch
matching

3. Obtain model-to-frame matches CMF with edge tracking

4. Predict the camera pose at t with EKF

5. Fuse different feature matches CFF and CMF by Huber func-
tion w.r.t. camera pose obtained from EKF

6. Estimate the pose at t with weighted least squares

7. Update EKF

Incremental Mapping:

1. Obtain camera pose with model-based tracking by frame-to-
frame matching of keypoint and edge features

2. Map non-modelled feature points by forward projection

3. Cull the points not active in current camera view

4. Use mapped points to track the user in arbitrary environment

(a) (b) (c)

Figure 5: Results of one-step, model-based user positioning for dif-
ferent scenarios. The user is localized by shape context matching
and WCLM optimization. (a) Coarse pose obtained from position
and orientation sensors; (b) Corrected pose with superimposed sil-
houette; (d) Corrected pose with augmented wireframe of the model.

6 EXPERIMENTAL RESULTS

6.1 Hardware
The hardware system specification used in our setup consists of the
following devices. The Logitech QuickCam Pro 5000 camera, with
outer casing removed, is used for capturing images at 320× 240
resolution. The inertial sensor device used for orientation measure-
ment is OS5000-S. The gyroscope is tightly coupled to the camera.
The position sensor is the HOLUX M-1000 wireless Bluetooth GPS
receiver having 1 second update rate. The system is targeted for the
UMPC (Fujitsu U2010 1.66Hz, single core with INTEL GMA 500
graphics card) and runs at 9 frames per second. The performance
varies depending on the polygon count of the model used for track-
ing. We have used two virtual buildings approximately consisting
of 1700 and 2300 polygons respectively.

6.2 User Positioning
Results of automatic user positioning with shape context based sil-
houette matching under extreme variations are presented in Fig. 5.
The silhouette from the image is extracted by a flood filling and
thresholding algorithm while that of model is obtained with thresh-
olding. 3D transformation parameterized by the 6-dimensional vec-
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Frame 1 Frame 230 Frame 460 Frame 750 Frame 1100 Frame 1276

Figure 6: Visual representation of robust camera tracking results. Top row demonstrate the results of combined feature tracking while bottom
row illustrates tracking based on keypoints alone. Video sequence consists of 1276 frames.

Frame 1 Frame 200 Frame 400 Frame 600 Frame 800 Frame 1100

Figure 7: Visual representation of robust camera tracking results. Top row demonstrate the results of combined feature tracking while bottom
row illustrates tracking based on keypoints alone. Video sequence consists of 1100 frames.

tor ξ is estimated using the iterative, re-weighted, constrained LM
optimization.

Rough pose estimates obtained from the sensors are dominated
by translation and scaling errors due to coarse granularity of the
GPS data (Fig. 5(a)). Variations exhibited by these errors from
time-to-time and day-to-day make it difficult to parameterize them.
Simple parameterization based on Gaussian distribution was done
in [21]. This parameterization provides upper and lower bounds on
the probable position and makes the search of correct pose feasi-
ble. Alignment results demonstrate the invariance of shape context
based matching and WCLM optimization towards those errors (Fig.
5(b) and (c)). The accuracy of correct camera pose estimation en-
tirely depends on the quality of the matches between two shapes.
Hence it is very essential to detect and reject outliers.

6.3 Tracking

Once initialized, the system switches to tracking mode. After ini-
tialization, data from the camera alone is used for tracking. Cam-
eras with fish-eye lenses seem to provide better tracking results for
longer video sequences. However, in such scenarios drifts are per-
ceived later rather than sooner. Moreover, irrespective of the cam-
era lens, drifts are inherently associated with visual tracking.

Major camera motion is captured by frame-to-frame keypoint
matching CFF . Drifts associated with CFF matching are minimized
by estimating misalignment at every frame. The misalignment is
estimated by matching the silhouette of the model to that of the im-
age. To keep the processing simple, edge-tracking is performed to
do silhouette matching and is denoted as CMF . Drifts are estimated
at every frame and fused with keypoint matches. These matches
basically provide the feedback to the tracking mechanism. CMF

matches suffer from the aperture problem associated with edge-
tracking as motion cannot be perceived along the edges. Hence,
CFF and CMF matches are appropriately weighted before final pose
estimation. These weights are generated by predicting pose from
EKF and M-estimator. We used Huber function estimator to fuse
the matches.

Subjective results for keypoint based tracking and combined fea-
ture tracking are tabulated at different instances in Fig. 6 and 7.
Video sequence of Fig. 6 has over 1200+ frames while that of Fig.
7 consist of around 1100 frames. The first row in both the figures
presents the results of the proposed tracking algorithm while the last
row shows results obtained by keypoint tracking only. The keypoint
based tracking starts drifting early and never recovers for both the
sequences while low-drift tracking is achieved with the combined
feature tracking approach even after 1000 frames. Edge tracking
prevents the drift from escalating over time. In CFF based tracking,
negligible drift is observed till 100 frames for both the sequences.
The tracking results are provided in the supplementary video mate-
rial.

Fig. 8 presents the quantitative results of the user’s position ex-
tracted from the two methods for video sequence of Fig. 6. Feature
tracking results are then compared with raw GPS data (red trajec-
tory). The blue trajectory depicts the pose obtained with our pro-
posed algorithm. The position data obtained from GPS sensor ex-
hibits roughly 5 meters drift in the east-west direction while it is 10
meters in the north-south direction. The figure clearly demonstrates
the drifts in position estimation with CFF based tracking (green tra-
jectory) right at the beginning and not following the coarse path
obtained from GPS. The orientation results obtained with the two
approaches are plotted in Fig. 9. Both the approaches produce com-
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Figure 8: Camera tracking results projected in local coordinate plane
as east and north map points in meters for the video sequence of Fig.
6. Raw GPS position (red), results of proposed CMF +CFF combined
feature tracking (blue) and results of CFF tracking (green) alone.

Figure 9: Results of camera orientation obtained with CMF + CFF
(blue) and CFF (green) tracking for the video sequence of Fig. 6.
Orientation data obtained from gyroscope is plotted in red for com-
parison.

parable results for first 100 frames. Then the results of CFF based
tracking starts deteriorating and digressing from the proposed com-
bined tracking approach and gyroscope data.

We also observed that the proposed combined feature matching
and tracking approach is pretty robust to initialization errors aris-
ing from user positioning approach of Section 3. This is expected,
as edge tracking provides estimate of misalignments which is cor-
rected as the tracking progresses.

6.4 Failure Recovery

In OAR, mobile devices are either head-mounted or handheld,
which makes them susceptible to jerky motions, causing tracking
failures. In such scenarios, re-initialization is needed to maintain
the tracking. We illustrate the failure recovery results for SC based
matching approach.

Under sudden motion, local feature matches obtained by the
CFF and CMF tracking produce negligible feature correspondences,
causing no updates in camera pose, hence leading to tracking fail-
ure. Tracking should be resumed and the model should lock back
when camera recovers from such disturbances. Automatic, robust
and fast re-initialization is must to resume the tracking. Fig. 10
and 11 illustrates the robustness of the SC based matching under
sudden motions. Silhouettes of model and image are extracted and
matched to re-initialize the camera pose. To ensure that the sil-
houette extracted from image is not noise, we also employ keypoint
based matching CFF between the frames when tracking stopped and
the current camera frame for rapid and robust pose recovery.

Frame 1 Frame 122 Frame 123 Frame 148

Frame 167 Frame 210 Frame 211 Frame 306

Figure 10: Results of failure recovery. Tracking starts at frame 1 and
continues till frame 122. Sudden motion at frame 123 causes no up-
dates in camera pose. For illustration purpose, model is rendered
using old camera pose in frames 148 and 167. SC based match-
ing locks the model in frame 210 and tracking starts from frame 211
onwards.

Frame 1 Frame 70 Frame 71 Frame 87

Frame 117 Frame 136 Frame 137 Frame 160

Figure 11: Results of failure recovery. Tracking starts at frame 1 and
continues till frame 70. Sudden motion at frame 71 causes no up-
dates in camera pose. For illustration purpose, model is rendered
using old camera pose in frames 87 and 117. SC based matching
locks the model in frame 136 and tracking starts from frame 137 on-
wards.

6.5 Mapping
Incremental tracking and mapping results for outdoor augmentation
are illustrated for two video sequences in Fig. 12 and 13. These
are closed loop tests in which the camera starts from known model-
based tracking and switches over completely to model-free tracking
and comes back to the starting position to illustrate the tracking
accuracy.

The video of Fig. 12 consist around 492 frames and user mo-
tion is predominantly a panning type with little translation. The
video of Fig. 13 is bit longer with 594 frames, and has erratic cam-
era movements. The alignment results at the beginning and after
loop closing shows the robustness of the incremental mapping al-
gorithm. Robust tracking is achieved by frame-to-frame tracking
CFF , consisting of multiple features such as edges and keypoints.
Edge points extracted from image silhouettes are matched with SC
descriptor. For better results, please see the supplementary material
of those videos.

Fig. 14 illustrates the consolidated point cloud map for the video
sequence of Fig. 13. The camera has been tracked successfully
in absence of any prior model data. Loop closing is successfully
achieved after traversing through the loop.

7 LIMITATIONS AND FURTHER WORK

OAR systems demand accurate 6-DoF pose tracking in unprepared
environments. No single sensor fulfills that demand while being
robust and accurate at the same time in large outdoor environments.
We proposed a hybrid sensor fusion solution to address positioning,
tracking and mapping issues for OAR systems. The solutions are
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Frame 1 Frame 93 Frame 168 Frame 251

Frame 301 Frame 361 Frame 433 Frame 492

Figure 12: Results of incremental tracking and mapping approach.
Tracking starts at frame 1 and comes back to initial position after
492 frames. Model augmentation at frames 1, 93 and 492 illustrates
the accuracy of the proposed incremental tracking and mapping ap-
proach.

Frame 1 Frame 40 Frame 234 Frame 304

Frame 384 Frame 454 Frame 520 Frame 594

Figure 13: Results of incremental tracking and mapping approach.
Tracking starts at frame 1 and comes back to initial position after
594 frames. Model augmentation at frames 1, 40 and 594 illustrates
the accuracy of the proposed incremental tracking and mapping ap-
proach.

based on certain assumptions, like availability of silhouettes, which
is feasible if the user is not too near the target and a silhouette can
be extracted for matching and tracking. Other limitations of the
proposed algorithm and further work are described below.

7.1 Positioning Failures

Our proposed one-step model-based user positioning achieves fast
user positioning, however, at the cost of convergence accuracy.
Shape matches obtained at the beginning between model and im-
age silhouettes decide the fate of the final alignment result. More-
over, shape matching results based on shape context (SC) descrip-
tors are sensitive to contour sampling and presence of extra clutter.
To alleviate sensitivity of the SC based matching and local minima,
repetitive model projection and shape matching can be employed.
However, such an approach will give rise to initialization delays.

7.2 Tracking Failures

We achieved low-drift tracking results for longer durations by com-
bining frame-to-frame keypoint features and model-to-frame edge
tracking. Tracking results are definitely better when both these fea-
tures are easily available for tracking. Nevertheless, reasonable
tracking is still maintained with either of the feature matches for
short durations. Hence, our system is robust to occasional loss of
keypoint or edge matches. However, our system will eventually
drift under persistent matching failure from either of the features.

7.3 Mapping Inadequacies

To track the user in unknown environments, we adopted an in-
cremental tracking and mapping approach. Mapping robustness is

Figure 14: Point cloud demonstrates the mapped points (in blue) by
incremental tracking and mapping approach for the video sequence
of Fig. 13. The camera trajectory is depiected in red.

achieved by fusing different feature matches. To make it computa-
tionally light, we have neither made any attempt to refine the maps
nor do we store those maps as tracking progresses. As the extent of
exploration is not known a priori, the proposed approach provides
adequate results. However, to take care of tracking uncertainties,
robust mapping and tracking can be achieved by refining 3D maps
of visible interest points as tracking progresses [5, 7].

8 CONCLUSION AND FUTURE SCOPE

In this paper we have proposed a hybrid, one-step, model-based
user localization and robust tracking and mapping approaches for
outdoor mixed reality applications.

The rough estimate of the camera pose available from position
and orientation sensors is used to render the model. Silhouettes ex-
tracted from model and camera image are matched with the shape
context descriptor. Such descriptors are ideal for OAR as it guar-
antees the global convergence and fast recovery from tracking fail-
ures. Further, figural continuity constraints are imposed to identify
and reject outliers arising due to the presence of clutter, occlusion
and partial data. The final pose is estimated by imposing box con-
straints. The approach is non-iterative and avoids costly rendering
of the model at every iteration.

Once initialized, the algorithm switches to the combined track-
ing mode. Different feature matches such as keypoints and edges
are appropriately weighted with respect to the current pose pre-
dicted from EKF to handle the short comings of individual trackers.
Superior tracking results are obtained for longer video sequences.
The combined tracking approach is even robust to small initializa-
tion errors.

The extensible mapping approach provides user tracking in un-
prepared environments. Such tracking is very much desirable due
to ever changing dynamic outdoor conditions. Incremental map-
ping provides tracking capability not only for the unprepared en-
vironments but also when target object is poorly textured, such as
buildings, which can lead to drifts.

The positioning, tracking and mapping framework presented in
this paper for OAR assumes easy extraction of silhouette/outline
from camera images, which is feasible if the user is not too near the
target and presence of skyline leads to clean segmentation.

The future scope is to increase the robustness of the proposed
positioning and mapping approaches. Robust user positioning can
be achieved by culling the clutter in the image silhouette, which is
associated with unwanted background thereby reducing the number
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of outliers. Similarly, we seek to improve the tracking accuracy in
unknown environments by refining the 3D maps over time.
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