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ABSTRACT

In this paper we present a novel model-based hybrid technique
for user localization and drift-free tracking in urban environ-
ments. In outdoor augmented reality, instantaneous 6-DoF user
localization is achieved with position and orientation sensors
such as GPS and gyroscopes. Initial pose obtained with these
sensors is dominated by large positional errors due to coarse
granularity of GPS data. Subsequent tracking is also erroneous
as gyroscopes are prone to drifts and often need recalibration.
We propose to use model-to-image registration technique to re-
fine initial rough estimate for accurate user localization. Large
positional errors in user localization are mitigated by aligning
silhouettes of the model with that of the camera image using
shape context descriptors as they are invariant to translation,
scale and rotational errors. Once initialized, drift-free tracking
is achieved by combining frame-to-frame and model-to-frame
feature tracking. Frame-to-frame tracking is done by matching
corners whereas edges are used for model-to-frame silhouette
tracking. Final camera pose is obtained with M-estimators.

Keywords— Mobile Augmented Reality, Drift-free Camera
tracking, User Localization, Shape Matching

1. INTRODUCTION

The evolution of mobile-computing, location sensing and wire-
less networking has created a new class of computing: context-
aware computing. Mobile computing devices such as PDAs
have access to information processing and communication ca-
pabilities but do not necessarily have any awareness of the con-
text in which they operate. Context-aware computing describes
the special capability of an information infrastructure to recog-
nize and react to the real world context. The most critical aspect
of context then is the location. One such context-aware technol-
ogy is mobile augmented reality (MAR) which combines a users
view of real world with location specific information. Such in-
formation could be in the form of simple text, image, multi-
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Sensor-based vs hybrid localization

Drifted vs drift-free tracking

Fig. 1. First Row: GPS and inertial sensors together provide 6-DoF
rough estimate of the camera in outdoor environments (left). Model-
based shape matching technique to mitigate localization errors (right).
Second Row: Error accumulation over time causes drifts in camera
pose estimation (left). Combined region (frame-to-frame) and silhou-
ette (model-to-frame) tracking can reduce tracking drifts (right).

media or 3D graphics. Possible applications of MAR comprise
architectural walkthroughs, tourism, exploration etc.

The most important aspect of MAR system is to identify the
location and orientation of the user to retrieve the context so
as to present context-aware information thereby enhancing the
general awareness of the surrounding. Accurate estimation of
camera pose in global space is the most important aspect to pro-
vide such mixed illusion. Lack of accuracy can cause complete
failure of coexistence of real and virtual worlds. In MAR sys-
tems, instantaneous 6-DoF user localization is achieved with
position and orientation sensors such as GPS and gyroscopes.
Initial pose obtained with these sensors is dominated by large
positional errors due to coarse granularity of GPS data. Sub-
sequent tracking is also erroneous as gyroscopes are prone to
drifts and often need recalibration. In some applications accu-
racy of these devices may be adequate whereas in others it is
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less than desired for true visual merging. Vision techniques can
be employed to mitigate sensor errors for accurate user local-
ization and tracking in urban environments as illustrated in Fig.
1.

To overcome the practical limitations of different modalities
in the context of outdoor environments, hybrid approaches are
normally employed. These approaches utilize data of inertial
sensors as a rough estimate of the camera pose while vision
technique refines it further. This paper presents one such novel
hybrid model-based approach for outdoor mixed reality applica-
tions in which automatic initialization and drift-free tracking is
achieved. Automatic initialization is done by refining the rough
camera pose obtained from sensors by matching silhouettes of
model data and image data with shape context descriptors [1].
These descriptors are invariant to translation, scale and rota-
tional errors, which is very desirable for automatic alignment
as initial pose estimates are often dominated by position errors
due to coarse granularity of GPS data.

Once aligned, extended Kalman filter (EKF) of constant
velocity model is initialized and system switches to track-
ing mode. Drift-free camera tracking is obtained by combin-
ing frame-to-frame and model-to-frame tracking. Frame-to-
frame tracking is performed by using Harris corner detector
and matching [2] whereas model-to-frame silhouette tracking is
performed by moving edges algorithm of [3]. Model-to-frame
matches serve as a feedback mechanism to correct the drifts in
camera tracking. These different matches are then appropri-
ately weighted with camera pose predicted from EKF. Linear
system of equations is then solved for camera pose by iterative,
reweighted least-squares.

2. RELATED WORK

Many approaches ranging from sensor-based to pure vision to
hybrid have been proposed for outdoor augmented reality appli-
cations.

Pure vision based techniques such as [4, 5, 6] do image based
object recognition to localize and track users in outdoor envi-
ronments. User context here is acquired by querying the im-
age database of labeled objects. On the other hand, hybrid
approaches fuse data from different sensors such as camera,
GPS, gyroscopes etc. In these approaches 3D georeferenced
graphical models of the target surrounding serve as a context.
These systems utilize data of inertial sensors as a rough pose
estimate while vision system refines it further. Hybrid track-
ing approaches mainly differ based on which natural features
are used by vision technique for tracking purposes. Approaches
presented in [7, 8] use lines, [9, 10] uses edges while [11, 12]
uses corners for tracking. These approaches take care of track-
ing only and initialization is often assumed known.

Early work in vision based automatic initialization is re-
ported in [13]. The approach does model based automatic land-
mark detection and matching for rotational errors only. Ap-
proach presented in [14] does successive approximation of GPS
data and edge tracking to converge to the correct pose.

3. CAMERA POSE ESTIMATION

Camera pose is estimated by 3D-2D correspondences and
twists. A 3D point Pw = (Xw, Yw, Zw, 1)T represented by ho-
mogeneous coordinates in world frame is projected into point
Pc in camera frame as:

PC =

[
R T
0 1

]
Pw = GPw

where, R (rotation) and T (translation) having 3 DoF each
denote the relative transformation between world and camera
coordinate frames. This rigid body motion is represented by
G ∈ SE(3) in homogenous coordinates as above. For every G
there exists a twist ξ̂ ∈ se(3), a 4 × 4 matrix with upper 3 × 3
component as a skew-symmetric matrix. Coordinates of twist
are given by a 6-dimensional vector ξ ∈ R6. G can be obtained
from twist with exponential mapping: G = eξ̂ [15].

Under camera motion, a point P tw at instance t is related to a
point P t+1

w at instance t+ 1 by rigid motion G:

P t+1
w = GP tw = eξ̂P tw ≈ (I + ξ̂)P tw.

After retaining first order terms only, their projection in image
plane expressed in terms of twist is:

pt+1 − pt =
[
ux
uy

]
= Jξ. (1)

Left hand side is the perceived optical flow u in image plane due
to motion of camera and Jacobian J is a 2×6 matrix that relates
these measurements to camera pose. For N feature matches, N
equations of the above form are obtained. Then twist ξ that
minimizes the sum of square residual errors ri = Jξ − u is
obtained by solving following system of linear equations:

ξ = arg min
ξ

∑
i

r2i = arg min
ξ

‖Jξ − u‖2. (2)

4. MODEL-BASED LOCALIZATION WITH SHAPE
CONTEXT DESCRIPTOR

We propose a novel model-based non-iterative hybrid approach
for automatic user localization in urban environments. Ap-
proach relies on model-to-frame features matching. Region
based model-to-frame matching with features such as Harris
[2], SIFT [16], or Fern [17] are not suitable as possible changes
in illumination, inaccurate texture stitching etc. could lead to
false matching and alignment. In outdoor environments, edges
also tend to get cluttered due to large viewing distances making
them unsuitable as potential feature candidate (Fig. 2). Reli-
able alignment is then achieved by matching appearance of the
model outline to the image. Outline/silhouette from the model
and image are then extracted as illustrated in Fig. 2. Without
loss of generality, we assume textureless, georeferenced mod-
els of the environment are available. Given resource scarcity
on mobile devices, such models are more desirable as they take
less disk space and are fast to render.
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Rendered model Camera Image

Fig. 2. First row: Rendered model and camera image. Illumination
changes and errors in texture stitching are clearly visible. Second row:
Edge detection results on input images. Third row: Contour extraction
from rendered model and camera data for alignment.

With limited feature choices, model-based hybrid initializa-
tion with low level features is extremely challenging. Iterative
closest point (ICP) [18] and distance transform (DT) based reg-
istrations have tendency to get stuck in local minima and hence
inappropriate for localization due to large initial sensors errors.

Other approach for contour matching could be to prototype
the appearance of the contour obtained from rendered model
and match it in the camera data. One such prototyping of con-
tours is proposed in [1] by shape context descriptor. The de-
scriptor characterizes a particular contour point with respect to
all other contour points. These points are randomly sampled
from the contour shape. Relative distances, angles and normal-
ization makes shape context descriptor invariant to translation,
rotation and scale respectively. Once model and image con-
tours are parameterized with shape descriptors, one-to-one sam-
ple point correspondences are established.

Assume that the set, P = {p1, . . . , pn}, pi ∈ R2, of n points
represent the points on shape obtained from model. Similarly,
the set Q = {q1, . . . , qm}, qi ∈ R2, of m samples represent
the points on shape obtained from image (Fig. 3(a)). For each
point pi from model contour the best possible matching point qj
from the image contour is obtained. The local cost of matching
a point pi to a point qj is Cij = C(pi, qj). As shape contexts
are distributions represented as histograms, the matching cost is
obtained with χ2 test statistic.

Shapes are matched by minimizing cost for each point pi on

(a) (b)

(c) (d)

Fig. 3. Silhouette matching with shape context descriptor. (a) Sam-
pling of model (red) and image (blue) contours with points. Image
contour has extra points due to clutter of trees, unmodeled antenna on
top of the building etc. Correspondences obtained with (b) forward and
(c) bidirectional tracking. (d) Removing outliers (marked red) from (c)
with figural continuity constraint.

model contour P to point qj on image contour Q as:

C(P,Q) =
n∑
i=1

min
j

C(pi, qj) (3)

We define such tracking as forward matching and results are
demonstrated in Fig. 3(b). As the number of silhouette points
n of model contour and m of image contour could be different,
undesirable effects such as many-to-one matches are obtained.
To obtain unique correspondences, we employ the bidirec-
tional tracking in which matching cost of model-to-image (for-
ward tracking) and image-to-model (backward tracking) shape
matching costs combined together as:

CBT (P,Q) =
1
2
[C(P,Q) + C(Q,P )] (4)

Results of bidirectional tracking are illustrated in Fig. 3(c).
Bidirectional tracking with shape context descriptor alone is
not sufficient for reliable correspondences, especially in situ-
ations where extra clutter and/or partial shape data are encoun-
tered. This is normally the case for outdoor augmented reality
as non-modeled elements such as pedestrians, vehicles, lamp-
posts, trees etc. present in camera data give rise to extra clutter
as well as occluding the desired target. Fig. 3(c) demonstrates
the effect of these on shape context based matching. Extreme
model shape points are getting matched to the points from clut-
ter.

Robustness of shape context matching is then increased by
introducing a figural continuity constraint proposed in [19]. The
constraint states that, the two neighboring points on the model
shape P should match to nearby points on the target shape Q.
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Fig. 4. Combined tracking in progress. Extracted silhouette from
image is overlaid by white color. Edge correspondences obtained from
model-to-frame tracking are illustrated with red color while green ones
coresponds to frame-to-frame region based corner matching.

However, this constraint needs points on the model shape to
be ordered. Once ordering of points pi is done using chain
codes, neighboring matches are subjected to figural continuity
constraint. Point pairs not obeying the constraint are examined
and point correspondence having more shape context error from
the pair is detected as outlier and excluded from pose calcula-
tions. The result of figural continuity constraint is illustrated
in Fig. 3(d). Camera pose is obtained from remaining correct
matches by iterative least squares using Eq. 2.

5. DRIFT-FREE CAMERA TRACKING

After correcting the initial camera pose, the system switches to
tracking mode. EKF is initialized and updated at each frame
which serves two purposes: one to provide estimate of the cam-
era pose for next frame and another to smooth out the jitter-
ing effect of tracking. Drifts in tracking is a common problem,
which arises due to inaccurate camera calibration, occlusion,
incomplete and partial data etc. To achieve drift-free and ro-
bust tracking for long sequences, combined tracking of corners
and edges is used. Frame-to-frame corner tracking captures the
major camera motion while model-to-frame edge tracking pro-
vides feedback to correct drifts. Such combined tracking has
been successfully used for tracking articulated [20] and com-
plex rigid [21] objects. Approach proposed by [22] fuses corner
and edge tracking in a unified manner.

Inspired by their results, we propose to use combined feature
tracking for camera pose estimation in outdoor scenarios. Out-
door environment poses different challenges than controlled lab
environments. Most of the time meaningful edges are difficult
to extract for feasible model-to-frame matching as illustrated in
Fig. 2. To provide resonable feedback to avoid drift in over-
all tracking, silhouette of the model is matched to the partial
silhouette obtained from camera data using moving edges algo-

Angle plots (degrees)

Translation plots (meters)

Fig. 5. Illustration of drifted (red) and drift-free (blue) tracking.
Tracking based on corners only start drifting around 150 frame and
which accumulates further.

rithm of [3]. Region based frame-to-frame tracking is carried
out using Harris corner matching. Fig. 4 illustrates combined
tracking process.

Region based corner matching suffers from occlusion and
mismatches arising due to repetitive structures present in man
made environments. Similarly, edge tracking suffers from aper-
ture problem. The moving edges algorithm captures motion
only in direction perpendicular to edge while motion along the
edge is not detected. To reduce the influence of different fea-
ture tracking algorithms, matches are appropriately weighted.
Weighting is done using M-estimators. Camera pose at the cur-
rent frame is predicted from EKF and Huber estimator [23] is
used to generate weights. Final camera pose is predicted by
iterative reweighted least-squares system of Eq. 2.
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Cx = 20.0m Cx = 25.0m Cx = 30.0m Cx = 30.0m Cx = 34.0m

Cy = 0.0m Cy = 1.25m Cy = 1.0m Cy = 1.75m Cy = 1.25m

Cz = 272.0m Cz = 268.0m Cz = 265.0m Cz = 272.0m Cz = 275.0m

Fig. 6. User localization results with different GPS values. Absolute GPS coordinates are mapped to local tangent plane and are expressed in
meters (Cx and Cz). Cy value reflects altitude (height), not captured by GPS, is varied from 0 to 1.75 meters for testing purposes. Orientation
values are kept constant. First row illustrates initial pose estimate available from intertial sensors. Second row demonstrates shape matching and
outlier detection step. Last row show the final alignment results.

6. RESULTS

The hardware system specification consists of the following de-
vices. The Unibrain Fire-i camera with 1.9 mm lens is used for
capturing the data at 320×240 resolution. Inertial sensor device
used for orientation measurement is OS5000-S. The gyroscope
is tightly coupled to the camera. The position sensor is HOLUX
M-1000 GPS receiver. The system is targeted for the UMPC
devices such as Raon Everun Note and runs at 9 frames per sec-
ond. Graphical model consists of 1700+ polygons. For illus-
tration purpose only we are using textured model. Algorithm is
equally applicable for models without textures. We demonstrate
the tracking results for sequence consisting of 800+ frames.

Results for automatic initialization with shape context based
silhouette matching are presented in Fig. 6. Rough position es-
timate obtained from GPS have translation and scaling errors.
Alignment results demonstrate the invariance of shape context
based matching towards those errors. Accuracy of correct cam-
era pose estimation entirely depends on the quality of matches
between two shapes. Hence it is very essential to detect and
reject outliers.

Once aligned, system switches to tracking mode. Results for
corner tracking alone and combined tracking are presented in
Fig. 5 and 7. Fig. 5 presents the quantitative error analysis

for two methods. Corner based tracking starts drifting pretty
early and never recovers. Marginal errors were observed in es-
timating yaw angle whereas large drifts (around 8-10 degrees)
were resulted in pitch and roll angles. Similarly translation er-
rors in all three directions were minimal till 500th frame and
large drifts in Ty , Tz are observed afterwards. Visual results of
drift-free tracking are tabulated in Fig. 7 at different instances.
First row present results of proposed tracking algorithm while
second row shows results of corner tracking only. Visual results
confirm the fact of quantitative error analysis. Drift-free track-
ing is achieved with combined tracking even at 801st frame.

7. CONCLUSION

In this paper we have proposed hybrid non-iterative model-
based user localization and drift-free tracking approach for out-
door mixed reality applications. Rough estimate of the camera
pose available form position and orientation sensors is used to
render the model. Silhouettes extracted from model and cam-
era image are matched with shape context descriptor. Figural
continuity constrains are imposed to get rid of outliers arising
due to presence of clutter and partial data. The approach is non-
iterative and avoids costly rendering of model at every itera-
tion. Once initialized, algorithm switches to combined tracking
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Frame 152 Frame 317 Frame 521 Frame 659 Frame 801

Fig. 7. Visual representation of camera tracking results at different instances. First row depicts tracking results with our proposed approach while
second row is with traditional (based on corner tracking alone) approach. Drift keeps increasing by each passing frame.

mode. Different matches are appropriately weighted with re-
spect to current pose predicted from EKF to handle short com-
ings of individual trackers. Superior tracking results are ob-
tained for longer video sequences. Combined drift-free tracking
approach is even robust to slight initialization errors. Versatility
of the proposed localization approach with shape context de-
scriptor for different outdoor conditions is under consideration.

8. REFERENCES

[1] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and ob-
ject recognition using shape contexts,” IEEE. Trans. PAMI, vol.
24, pp. 509–522, 2002.

[2] C. Harris and M. Stephens, “A combined corner and edge de-
tection,” In. Proc. of The Fourth Alvey Vision Conference, pp.
147–151, 1988.

[3] P. Bouthemy, “A maximum likelihood framework for determin-
ing moving edges,” IEEE Trans. On Pattern Analysis and Ma-
chine Intelligence, vol. 11, no. 5, pp. 499–511, 1989.

[4] I. Gordon and D.G. Lowe, “Scene modelling, recognition and
tracking with invariant image features,” In Proc. ISMAR, 2004.

[5] A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof, “From
structure-from-motion point clouds to fast location recognition,”
In Proc. CVPR, 2009.

[6] D.-N. Ta, W.-C. Chen, N. Gelfand, and K. Pulli, “Surftrac: Effi-
cient tracking and continuous object recognition using local fea-
ture descriptors,” In Proc. CVPR, 2009.

[7] B. Jiang, U. Neumann, and S. You, “A robust hybrid tracking
system for outdoor augmented reality,” In Proc. Virtual Reality,
2004.

[8] H. Wuest, F. Vial, and D. Stricker, “Adaptive line tracking with
multiple hypotheses for augmented reality,” In Proc. ISMAR,
2005.

[9] Z. Hu and K. Uchimura, “Fusion of vision, gps and 3d gyro data
in solving camera registration problem for direct visual naviga-
tion,” Int. Journal of ITS Research, vol. 4, no. 1, 2006.

[10] G. Reitmayr and T.W. Drummond, “Going out: Robust model-
based tracking for outdoor augmented reality,” In Proc. ISMAR,
pp. 109–118, 2006.

[11] M. Aron, G. Simon, and M.-O. Berger, “Handling uncertain sen-
sor data in vision-based camera tracking,” In Proc. ISMAR, 2004.

[12] P. Honkamaa, S. Siltanen, J. Jappinen, C. Woodward, and O. Ko-
rkalo, “Interactive outdoor mobile augmentation using marker-
less tracking and gps,” In Proc. Virtual Reality, 2007.

[13] K. Satoh, M. Anabuki, H. Yamamoto, and H. Tamura, “A hy-
brid registration method for outdoor augmented reality,” In Proc.
ISAR, 2001.

[14] G. Reitmayr and T.W. Drummond, “Initialisation for visual
tracking in urban environments,” In Proc. ISMAR, 2007.

[15] R. M. Murray, Z. Li, and S. S. Sastry, A mathematical introduc-
tion to robotic manipulation, CRC Press, 1994.

[16] D. Lowe, “Object recognition from local scale-invariant fea-
tures,” In Proc. ICCV, 1999.

[17] M. Ozuysal, P. Fua, and V. Lepetit, “Fast keypoint recognition in
ten lines of code,” In Proc. CVPR, 2007.

[18] Z. Zhang, “Iterative point matching for registration of free form
curves and surfaces,” Int. Journal of Computer Vision, vol. 13,
pp. 119–152, 1994.

[19] A. Thayananthan, B. Stenger, P.H.S. Torr, and R. Cipolla, “Shape
context and chamfer matching in cluttered scenes,” In Proc.
CVPR, 2003.

[20] J. Gall, B. Rosenhahn, and H.-P. Seidel, “Drift-free tracking of
rigid and articulated objects,” In Proc. CVPR, 2008.

[21] E. Rosten and T.W. Drummond, “Fusing points and lines for
high performance tracking,” In Proc. ICCV, 2005.

[22] S. Birchfield and S.J. Pundlik, “Joint tracking of features and
edges,” In Proc. CVPR, 2008.

[23] Z. Zhang, “A tutorial with application to conic fitting,” Image
and Vision Computing, vol. 15, pp. 59–76, 1997.

1183


