
Diminished Reality using Appearance and 3D Geometry of Internet Photo
Collections

Zhuwen Li1 Yuxi Wang2 Jiaming Guo1 Loong-Fah Cheong1 Steven ZhiYing Zhou1,2∗

1Dept. of Electrical Computer Engineering, National University of Singapore
2National University of Singapore (Suzhou) Research Institute

ABSTRACT

This paper presents a new system level framework for Diminished
Reality, leveraging for the first time both the appearance and 3D in-
formation provided by large photo collections on the Internet. Re-
cent computer vision techniques have made it possible to automat-
ically reconstruct 3-D structure-from-motion points from large and
unordered photo collections. Using these point clouds and a prior
provided by GPS, reasonably accurate 6 degree of freedom camera
poses can be obtained, thus allowing localization. Once the camera
(and hence the user) is correctly localized, photos depicting scenes
visible from the user’s viewpoint can be used to remove unwanted
objects indicated by the user in the video sequences. Existing meth-
ods based on texture synthesis bring undesirable artifacts and video
inconsistency when the background is heterogeneous; the task is
rendered even harder for these methods when the background con-
tains complex structures. On the other hand, methods based on
plane warping fail when the background has arbitrary shape. Unlike
these methods, our algorithm copes with these problems by making
use of internet photos, registering them in 3D space and obtaining
the 3D scene structure in an offline process. We carefully design
the various components during the online phase so as to meet both
speed and quality requirements of the task. Experiments on real
data collected demonstrate the superiority of our system.

Index Terms: H.5.1 [Information Systems]: Multimedia In-
formation Systems—Augmented Reality; I.4.8 [Image Processing
and Computer Vision]: Scene Analysis—Sensor Fusion, Tracking;
I.4.9 [Computing Methodologies]: Image Processing and Com-
puter Vision—Application;

1 INTRODUCTION

While augmented reality (AR) enhances users’ perception of real-
ity with context-specific information, such as text, sound, video or
graphics, diminished reality (DR) aims at removing parts of the real
world around us, including visual and vocal information. In partic-
ular, visual DR is so important that DR is usually taken to mean
removing objects and replacing it with an appropriate background
in a scene. The success of DR helps to make special effects possible
for broadcast industry, plan and illustrate revamp or modification in
structure design, and filter unimportant information in the scene so
that the user can focus on crucial things.

The specific term DR is not frequently mentioned until recently,
but there has been significant related works solving the problems
of image completion and object removal in the literature. Previous
approaches can be roughly separated into two categories:

Patch based methods [5, 6, 11, 12, 26, 33] generally sample
patches from the user’s images or video frames to fill in removed
regions. However, these methods cannot be directly adopted for
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online DR operations, because they usually manipulate all video
frames together in a batch manner. Recently, Herling and Broll
[15, 16] have adopted similar techniques to provide object cancel-
lation for DR purpose. This kind of methods does not rely on any
pre-processing and is computationally efficient. Though they usu-
ally produce visually plausible results, the filled-in portions may not
be authentic. In other words, the recovered background may not be
the same as the real scene behind the occluding objects. Thus, when
the background is complex and has rich semantics, these methods
are likely to result in conspicuous artifacts and frame-to-frame in-
consistency. This limits the applicability of these methods to out-
door scenes which often contain these rich structures.

Multi-view based methods [8, 18, 22, 38] use extra cameras
to capture the occluded background, which is then used to restore
the removed regions. This kind of methods usually recovers the
real scene behind the occluding objects, hence giving more con-
vincing results than that of patch based methods. Most of these
methods use multiple synchronous cameras, which is a natural ad-
vantage in cooperative work scenarios, but it also causes problems
if the user is alone or has only one camera on hand. Thus, it would
be more convenient if we can prepare the extra information before-
hand. Moreover, careful preparation may also help to accelerate the
algorithm.

Recently, we have witnessed a phenomenal upsurge in the num-
ber of photographs uploaded on the internet, many of which are pic-
tures of well-known touristic landmarks. These latter photographs
are often captured from almost every conceivable viewing position
and angle, different times of the day and night, spanning changes
in season, weather, and decades. Furthermore, big cities are now
being captured at street level (e.g. Google Streetview and Win-
dows Virtual Earth) and related photos are often uploaded by local
residents or tourists with the GPS information. The availability of
such rich imagery of highly traveled places, and increasingly even
those off the beaten path, presents opportunities in Mediated Real-
ity. Most importantly, over the past few years, advances in com-
puter vision [23, 32, 36] have made it possible to automatically ob-
tain 3-D structure-from-motion (SfM) points from these large and
unordered photo collections.

In this paper, we propose a new system level framework suitable
for outdoor DR, leveraging for the first time both the appearance
and 3D information provided by large photo collections on the In-
ternet. We first obtain a rough estimate of the user’s position us-
ing GPS and gyroscopes. A reasonable amount of the 3D scene
structure data can then be pre-fetched through wireless wide-area
networks for accurate user localization. For our purpose, we as-
sume SfM point clouds of the environment are available, which is
a reasonable assumption because these point clouds can be readily
prepared by an automatic offline 3D reconstruction system using
large photo collections on the Internet. Therefore, any 3D map ser-
vice is able to integrate this feature into its system. We also assume
photos used for 3D reconstruction are well registered in 3D space,
so that we can use the information in them to restore removed re-
gions. After accurate user localization, we search if there are suf-
ficiently close enough images, and we denote them as reference
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Figure 1: System workflow overview. See more details in the main text.

photos. These photos often exist, because people tend to photo-
graph from some popular vantage points and some parts of a scene
are photographed much more often than others [31]. If sufficient
reference images exist, several versions of the current view can be
directly synthesized from these images by homographic transfor-
mations, since these reference photos differ from the current view
and from one another by a rotation approximately.

In order to remove unwanted objects from the real scene, these
objects are selected by users in the first frame of a video sequence,
and then tracked by an object tracking method in all consecutive im-
age frames. Given the synthesized patches from the reference im-
ages corresponding to the “hole” of the current view, we compute
the correlation among them to detect the real unobstructed back-
ground, based on the simple premise that the most highly correlated
patches correspond to the true unobstructed background. Among
these unobstructed patches, we select the one with the highest cor-
relation, and blend it with the current view. We carefully design
the various components during this online phase so as to meet both
speed and quality requirements of the DR task.

The overall architecture of our system is presented in Figure 1,
which outlines the above-mentioned workflow. Generally, our ap-
proach belongs to the category of multi-view methods. However,
compared to previous multi-view methods, our approach has the
following advantages. Firstly, our approach is based on an auto-
matic offline 3D reconstruction using large photo collections on
the Internet. Secondly, based on the rich Internet photos, our ap-
proach is able to select reference images and detect unobstructed
regions automatically; the patches synthesized by one transforma-
tion warping from the reference images are more realistic than those
by pixel-wise reconstruction methods [8, 18, 38]. Last but not least,
we perform user localization, object tracking and diminished real-
ity simultaneously, providing a basis for next-generation Mediated
Reality environments, capable of augmenting and diminishing the
real world environment at once and with ease.

The rest of this paper is organized as follows. Section 2 reviews
related works. Section 3 introduces the offline data preparation and
online user localization. Section 4 describes reference photo selec-
tion strategy. In order to apply the algorithm to videos, consistent
video completion is introduced in Section 5. Then, our experimen-
tal results are illustrated in Section 6 and the limitations of this work
are discussed in Section 7. Finally, we draw the conclusion in Sec-
tion 8.

2 RELATED WORK

There is a significant literature on object removal. Among patch
based image completion methods, Wexler et al. [33] follow the
spirit of the classic texture synthesis method [7] and extend it to
3D volume space to fill in missing portions of videos. Their well-
defined objective function induces global coherence, thus leading to
spatio-temporally consistent video sequences and images. Crimin-
isi et al. [5] propose an exemplar-based method combining the ad-

vantages of texture synthesis and image inpainting. Drori et al. [6]
propose an iterative method to approximate the unknown regions
and then add details according to the most frequent and similar ex-
amples. Mansfield et al. [26] consider image patches remaining
natural under a variety of transformations, thus having much more
candidates for patch searching. Recently, Granados et al. have
proposed two algorithms: one to deal with dynamic backgrounds
[12] and the other to remove dynamic objects with a free moving
cameras [11]. Though these methods perform well in offline video
editing, they are not designed for online DR due to the batch pro-
cessing of video frames. Among this line of works, Herling and
Broll [15, 16] propose real-time object removal algorithms based
on image completion and synthesis for DR purpose.

Among multi-view methods, Zokai et al. [38] use paraperspec-
tive projection model to generate the correct background from mul-
tiple calibrated camera views. Jarusirisawad et al. [18] present a
plane-sweep algorithm for removing occluding objects of the scene
from multiple weakly-calibrated cameras. Our work is related to
Enomoto and Saito’s work [8], as we both perform planar warping
of other views to synthesize the regions to be filled in; the major dif-
ference is that they use markers to estimate camera poses, while we
use SfM point clouds to accomplish the task. More specifically, our
approach is most closely related to that of Lepetit et al. [22], which
also uses full 3D reconstruction to restore the removed regions. Our
work differs from theirs in several key ways. Firstly, while they
need the user to select some key-frames over the whole video and
outline the boundary of the unwanted object on these key-frames
accurately, our approach can automatically track the unwanted ob-
ject given the rough location of the object in the first frame. Sec-
ondly, they re-project the SfM points to the image plane and then
perform 2D Delaunay triangulation with these re-projected points,
following which homographic transformation is done in each trian-
gle. Thus, their results will depend highly on how good and dense
the reconstructed SfM points are in representing the shape of the oc-
cluded objects, while our approach only use SfM points to rapidly
locate the pose of the current view, then realistic patches are syn-
thesized from the rich Internet images. Thus, the SfM point clouds
can be compressed for data reduction in our approach.

Two interesting works [14, 34] also use rich internet photo col-
lections as sources for image inpainting, both based on an image
retrieval step. While [14] aims to find semantically similar pho-
tos to complete the scene, [34] tries to retrieve photos of the same
scene. However, it is not easy to extend these two methods to DR
due to their computational cost. Furthermore, [14] may find dif-
ferent scene photos for different frames, thus resulting in video in-
consistency. And since [34] does not carefully consider the camera
positions of the inpainting image and the retrieved photos, the com-
posite image may include new occlusions or mis-registered planes.

Since our method needs accurate camera pose estimation, it is
also related to localization methods based on SfM points. Recent
progresses include [1, 2, 17, 24]. Irschara et al. [17] generate a
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Figure 2: 3D reconstructions and camera poses of the “NUSWall” scene with 175 photos, the “Merlion” scene (partial) with 647 photos and the
“Fullerton Hotel” scene with 36 photos.

minimal set of synthetic images that covers the point cloud and use
a vocabulary tree to retrieve similar images in this covering, while
Li et al. [24] select a minimal set of 3D points that cover the im-
ages, and use these points themselves as the matching primitives.
In their first work, Arth et al. [2] bring similar localization method
to the AR community and use the idea of potentially visible sets to
partition and organize the SfM points. Their subsequent work [1]
is extended for outdoor AR applications using the GPS estimate
as prior and an online panoramic view generation. Their imple-
mentation is eminently suitable for executing on current generation
mobile devices.

3 3D RECONSTRUCTION AND USER LOCALIZATION

Reconstructing 3D geometry from large collections of Internet im-
ages of landmarks and cities is a large field of research. Powerful
algorithms [23, 32, 36] have shown that it is possible to fulfil this
task automatically. Using such reconstructed scene points, rather
than a collection of raw images or a complete model of the scene,
as a representation for user localization is promising.

3.1 3D Reconstruction

Our reconstruction system is based on Wu’s Visual SfM [36]. For
our particular purposes of user localization and diminished reality,
we make some changes to the algorithm and store more informa-
tion in each SfM point. First, noisy points are filtered for better
matching as in [24]. We sort the SfM points in an order such that
points visible from more image views are placed at the front of the
list and we only keep a small set of points at the front. This is de-
sirable because points visible from more images are more reliable
and noisy points will be filtered out. Second, as stated in [24],
the model is compressed for faster searching speed. We choose the
smallest subset of SfM points, such that each image is covered by
at least K points in the subset (K is 100 as in [24]). This step en-
sures that views depicting the same scene can at least find some
correspondences between one another and builds a compact rep-
resentation of all images, which in turn accelerates the searching
speed in the later matching step. Third, other than the 3D positions
of the SfM points, we also store the feature descriptor in each point
for the ensuing 2D-3D correspondence matching. In this work, we
use the 128-byte SIFT descriptor [25] for each point, because of its
invariance to uniform scaling, orientation, and partial invariance to
affine distortion and illumination changes, though the choice is not
limited to this. For each SfM point, we record its image set from
which the point is visible and the 2D position in each image in this
set as well. Later we will show how these records can help to carry
out immediate image warping. Figure 2 shows some reconstructed
scenes used in our experiments.

3.2 User Localization
To localize the user’s pose characterized by six degrees of freedom,
we need to extract features from the current frame, match them to
the SfM points and finally estimate camera pose using Perspective-
n-Point (PnP) method given the 2D-3D correspondences.

As the rough location of the user is known from the GPS in-
formation, only SfM points in the vicinity are fetched from the map
services. This strategy allows us to cope with the limited bandwidth
of current generation wireless networks. It also reduces the search
field for a correspondence to a much smaller set.

To meet the speed requirement, we opt for a GPU implementa-
tion of SIFT feature detection and extraction [35]. For fast query-
ing, we select an approximate nearest neighbor search algorithm -
Fast Library for Approximate Nearest Neighbors (FLANN) [28].
This algorithm uses hierarchical k-means trees or multiple random-
ized k-d trees to provide large speedup in querying with only minor
loss in accuracy. Most importantly, this library can automatically
choose the best algorithm and optimum parameters depending on
the dataset.

To make sure that the correspondences obtained have high relia-
bility, we use the ratio test to decide if a match is good or not. For a
certain feature point p, we obtain the first and second nearest points
in the search field and denote them as p′1 and p′2 respectively, and
retain the correspondence only if the distance to the first nearest
point dist(p, p′1) is much smaller than that to the second nearest
point dist(p, p′2), i.e.

dist(p, p′1)
dist(p, p′2)

< λ , (1)

where λ is the threshold ratio (set to 0.5 in our implementation).
Given 2D-3D correspondences, if the intrinsic parameters of the

camera are known, we can rely on the efficient PnP methods [10]
with a fast RANSAC [30] to determine the absolute pose. Other-
wise, a 4-point perspective pose approach [4] simultaneously es-
timating the pose and the focal length is applied. Due to the re-
quirement for speed, we assume that the intrinsic parameters of the
camera are well calibrated.

4 PATCHES SYNTHESIS AND SEAMLESS INSERTION

4.1 Patches synthesis
Once the user is accurately positioned, we can use nearby photos
registered in 3D space to restore the information behind the occlud-
ing object. We define the distance dcv from the camera to its visible
point set as the median value of distances to all points in the visible
set. Assuming we have two cameras, with distances to their visible
sets as di

cv and d j
cv respectively, if the baseline di j

b between these two



Figure 3: Correlation comparison used to detect unobstructed
patches. The ROI is outlined in the green rectangle in the current
view, the bottom row of figures are 7 patches warped from reference
images, ranked according to average NCC scores.

camera is relatively much smaller than the distance to their visible
sets, i.e.

di j
b

max(di
cv,d

j
cv)

< δ , (2)

where δ is a threshold to set, we consider these two cameras to
be close enough to each other. In other words, their poses differ
by only a rotation (and possible changes in intrinsic parameters) so
that pixels in one image can be directly transferred to the other by
a homographic transformation. In our experiments, we are able to
find these reference images very often, because people apt to pho-
tograph from some popular viewpoints. This fact allows “popular”
views to be restored quickly, because under such favorable circum-
stances, we do not need to synthesize current views using multiple
nearby images.

Given a set of reference images, we want to warp them to the cur-
rent view. A naı̈ve but efficient way is to compute the homography
using the rotation obtained via the estimated poses of the cameras
and the calibrated intrinsic parameters. However, this method needs
exact camera pose estimation, or else the result is often unstable.
Traditional Direct Linear Transformation (DLT) method [13] gives
better results but it needs 2D-2D correspondences, and feature ex-
traction is very time-consuming, especially when the reference im-
ages often have high resolutions. Careful readers may remember
that, for each SfM point, we have saved the image set from which
it is visible, as well as its 2D positions in each of these images.
Thus via the previous 2D-3D correspondence step, we already have
at our disposal all 2D-2D correspondences. Finally, we use DLT
method to compute a high quality homography.

Unfortunately, in some paths less well trodden, close images
may not exist. In this case, we can synthesize the current view
images from the next nearest photos. Given a camera pose and two
well-calibrated views of a scene with matched points in these two
views, we can determine the position of these points projected onto
the image associated with the provided camera pose. This is the
point transfer problem which is solvable in general given the above

information. Rays back-projected from corresponding points in the
first and second view intersect and thus determine the 3D point.
The position of the corresponding point in the third view is com-
puted by projecting this 3D point onto the image. [13] gives a
trifocal tensor based point transfer algorithm which avoids the de-
generacy of epipolar transfer. To synthesize the entire image of the
current view, we need pixelwise correspondences, which lead to
an optical flow estimation problem. However, the latter often gives
rise to false correspondences, thus resulting in bad synthesis. More-
over, these procedures are very time-consuming which makes this
solution impractical in real-time. Thus, we eschew this trifocal ten-
sor approach and our approach is solely based on the homography
warping. Fortunately, in this age and time when pictures are up-
loaded onto the internet at a torrential rate, even if one ventures far
away from the beaten track, there usually exist some relevant pho-
tos on the internet. For instance, the Fullerton Hotel in Singapore
is not your conventional tourist spot, but there are still several pho-
tos on the internet yielding sufficient coverage for some viewpoints
(See Figure 2). Yet another method is to mine (in an offline manner)
pictures from the travel guides or articles, which will usually give
us much more comprehensive coverage of places of interest around
the world.

4.2 Background Detection
Within the warped reference images, the region of interest (ROI)
patches corresponding to the ROI in the current view might also
contain an obstructed scene and cannot be used as the background
for other images. Usually, the obstructed view is due to different
types of occluding objects. To filter out these images, we com-
pute the correlation between each ROI patch pair. In particular,
we use the NCC(Normalized Cross Correlation) measure. After
running the comparisons for every pair of images, usually the un-
obstructed scenes would yield high correlation index, say, 0.8 and
above. When two obstructed scenes are compared, they almost al-
ways give significantly lower correlation values since it is unlikely
that the same object obstructs the same region over different times.
Figure 3 shows the 7 different image patches warped to the current
view, among which 3 patches are more or less unobstructed and
have been detected using the aforementioned correlation compari-
son. Finally, we choose the image patch with the highest average
NCC score as the candidate.

4.3 Seamless Blending
Since outdoor scenes typically exhibit changes in illumination and
different camera sensors and settings may capture colors and bright-
ness differently, we need to blend the images to compensate for
these differences (and other misalignments). A popular approach to
image blending is to perform the operation in the gradient domain
[29]. It is typically carried out by solving a Poisson equation with
Dirichlet boundary conditions. However, solving Poisson equation

p ip i+1 p i-1

x

αi
αi 1-

Figure 4: Angles of the MVC.



Figure 5: Left: Blending result with MVC. Right: Result with direct
copy & paste.

is often very time-consuming. Here, we use the Mean-Value Co-
ordinate (MVC) [9] to perform seamless blending, as it is able to
produce results close to those of Poisson blending but much faster
and more stable in video image blending.

To better understand the method, we first introduce the MVC.
Given a closed 2D polygonal boundary curve (in our case, it is the
bounding box of the tracking result) ∂P = (p0,p1, . . . ,pm),pi ∈R2,
the MVC of a point x ∈ R2 w.r.t ∂P is

λi(x) =
wi

∑m
j=0 w j

, i = 0, . . . ,m, (3)

where wi =
tan(αi−1/2)+tan(αi/2)

∥pi−x∥ , and αi is the angle between −→xpi

and −−−→xpi+1 (Figure 4). These coordinates can be stored compactly
in a matrix Λ ∈ Rm×n with its element Λi j = λi(x j), where n is
the number of pixels inside the polygon. Note that for our specific
configuration, the polygon is the rectangular bounding box and the
shape of this bounding box is fixed once given in the first frame
by the user. Thus, we only need to compute the MVC matrix in
the beginning. Moreover, since the MVC only depends on the rel-
ative positions of four points and these relative positions often stay
unchanged, the computation time can be further saved.

Solving Poisson equation involves constructing a smooth mem-
brane characterized by a harmonic function that interpolates the dif-
ference between the target and source patches (here the current view
and the reference photos respectively) along the boundary of the en-
tire region [9]. Analogously, a similar smooth interpolation mem-
brane can be constructed using MVC. In particular, we assume a
source image patch Is with the RGB intensity of its boundary pixels
stored in a matrix Qs ∈ Rm×3 and inner pixels in Ps ∈ Rn×3. Sim-
ilarly, we assume a target patch It with Qt ∈ Rm×3 and Pt ∈ Rn×3.
The interpolation is performed using the mean value:

P∗
t = ΛT (Qt −Qs)+Ps, (4)

where Λ is the previously computed MVC. Instead of solving a
large linear equation, MVC blending approximates the membrane
by two matrix addition and one multiplication operations, which
are very fast and easy to parallelize. Figure 5 shows the composite
results with and without MVC blending.

5 VIDEO-CONSISTENT REMOVAL

5.1 Object selection and tracking
For object removal in a video sequence, the unwanted object needs
to be selected by the user in the first frame. Since we assume a dy-
namic scene, where the hand-held camera or the objects in the scene
can move freely, the selected object has to be tracked in subsequent
video frames to ensure a continuous and coherent removal.

Object tracking has been well studied recently. Some works try
to provide exact boundary of the object, such as those based on the
active contour algorithm [21]. Other trackers use a bounding box as
small as possible to contain the entire object being tracked. In our
system, we apply the latter kind of methods for the following three

Figure 6: Tracking results of the “NUS Wall” sequence. From left to
right: results of frame 1, 34, 213 and 416.

Figure 7: Tracking results of the “Merlion” sequence. From left to
right: results of frame 1, 218, 289 and 335.

reasons: 1) object selection by a bounding box is much easier for
the user than by contour delineation; 2) unlike [15], we have enough
registered images to fill in the unwanted region, and thus only need
to ensure that the selected region covers the entire object without
having to worry about removing too large a region; 3) existing ob-
ject trackers using a bounding box generally perform much more
robustly than those based on the active contour algorithm when the
object appearance (pose) is changing.

Specifically, the tracking algorithm we applied in our system
is the real time compressive tracking algorithm [37], which in
our experience has the best balance of performance and efficiency
among the various competing algorithms that we have tried (such
as Tracking-Learning-Detection [19] and ℓ1 tracker [27] etc.).
This approach trains a naı̈ve Bayes classifier to classify unlabeled
patches in an online learning manner; the learning process is guided
by positive and negative image patches defined according to their
proximity to the current tracking location. The kernel part of this
algorithm is realized through its feature selection scheme, which
projects the image appearance feature space to a low-dimensional
compressed subspace, thereby facilitating efficient classification. In
summary, the compressive tracker operates as follows:

1. Initial position of the target is given by the user, and the clas-
sifier is initialized accordingly in the first frame.

2. For each frame, a set of image patches near to the previous
tracking location is sampled, and then the low-dimensional
feature is extracted by projection.

3. Use the Bayes classifier to find the tracking location with the
maximal classifier response.

4. Positive examples (patches very near to the current location)
and negative examples (patches less near to the current loca-
tion) are updated to train the classifier.

The advantages of the compressive tracker include the follow-
ing: 1) the learning process can handle the changing of the object
appearance, 2) it is robust even when the object is occluded, and 3)
it is easy to implement and runs very fast. Interested user can refer
to [37] for more details. Figure 6 and Figure 7 show some results
of this algorithm. Notice that in Figure 6, the second and the third
images have motion blurs, and in Figure 7 the boy turned his body
around, and yet both the objects can be correctly tracked due to the
online learning procedure.

5.2 Jitter removal
If the video frames are processed independently, jitter often occurs
due to the subtle differences of the patches. To maintain temporal



Table 1: Summary of processing time
Sequences Forward Sideway Rotation Merlion 1 Merlion 2 Merlion 3 Fullerton
Image size 536×360
Undesired Area Size 45×45 40×40 40×40 45×86 60×125 32×60 62×72
Undesired Area Ratio 1.04% 0.83% 0.83% 2.00% 3.89% 0.99% 2.31%
Feature Extraction 46.0ms 46.3ms 52.4ms 52.4ms 46.1ms 40.7ms 51.5ms
Feature Matching 16.7ms 16.4ms 16.2ms 12.0ms 14.8ms 15.0 ms 15.0ms
RANSAC EPnP 53.3ms 53ms 53.2ms 36.0ms 46.5ms 29.9ms 29.5ms
Object Tracking 31.1ms 30.8ms 30.9ms 30.5ms 25.5ms 29.9ms 29.5ms
MVC Blending 3.4ms 3.0ms 3.0ms 6.4ms 14.8ms 3.4ms 7.5ms
Total time 150.5ms 149.5ms 155.7ms 137.3ms 147.7ms 118.9ms 132.9ms

Figure 8: Composite results of three consecutive frames with (top)
and without (bottom) the jitter removal filter. The middle frame of
the bottom images has slightly fuzzier edge compared to the other
frames.

consistency, a popular way is to perform gradient domain fusion in
the temporal dimension [11, 33]. However, its high computational
cost hampers the application of this work to DR. Here, we propose
a filter to reduce temporal inconsistency.

Assuming that we already have the reference image Ir, what we
want to solve is the homography Hr,c that warps Ir to the current
frame Ic. Like the Kalman filter [20], we first perform a prediction
step. To predict the homography Hr,c, we first compute the homog-
raphy Hr,c−1 between Ir. Note that consecutive frames often fetch
the same reference images, thus Hr,c−1 would already be available
from the previous step most of the time. Even if the consecutive
frames obtain different references images, feature matching can be
performed rapidly as in Section 4.1. Therefore, the computational
cost of this step is very low. We then compute the homography
Hc−1,c between Ic−1 and Ic (the goodness of this homography as-
sumption depends on how close Ic−1 and Ic are). Finally, the pre-
dicted homography can be written as

H′
r,c = Hc−1,cHr,c−1, (5)

Similarly, we can predict another H′′
r,c using the frame Ic−2 and so

forth. After that, we compute the current Hr,c (“measurement” in
the terminology of Kalman filter) and finally fuse all the results by

averaging them. In our experiments, we find that prediction from
two past frames (Ic−1 and Ic−2) produces adequately consistent re-
sults. Figure 8 shows the importance of the jitter removal filter. The
first two rows are the composite results obtained with the filter and
the bottoms are the results without the filter. Notice that the middle
frame of the bottom row has slightly fuzzier edge compared to the
other frames. Though the difference is not obvious when viewed
from a static image, it shows up conspicuously as shimmering arti-
facts when viewed in the video mode (See it in the supplementary
video).

6 RESULTS

In this section, we present some experimental results using real
data. We test four scenes in our experiments. One is the “NUS
Wall” scene, in which the photos taken densely cover the scene.
The others are the “Merlion”, the “Fullerton Hotel” and the “Mount
Rushmore” scene, whose photos are downloaded from the Internet.
The 3D reconstructions of the former three scenes are presented in
Figure 2.

Our system is implemented with C++ and runs on a laptop with
Intel(R) Core(TM) i7 CPU Q740, 1.73GHz and a NVIDIA GeForce
GT 435M graphics card. We parallelised the feature matching task,
because the querying for each feature point is independent. Table 1
tabulates the average processing time of one image frame involved
in each step for individual test sequences. Note that our system can
run at interactive rates (about 6-8 fps). Compared to other multi-
view methods, the run-time performance of our method is satisfac-
tory: [22] is incapable of real time performance due to the manual
key-frame selection and object outline; [38] only runs on static im-
ages; in a desktop with Intel Core2 DUO 3.0GHz and a NVIDIA
Quadro FX 570, the frame rate of [18] is 2.5 fps when using 80
planes for plane-sweeping and running on 320×240 videos. While
[8] may run faster than our approach–with the computation mainly
incurred by the marker based camera calibration and the homogra-
phy warping steps–it needs to add extra markers to the scene. We
also consider more realistic situations, e.g., different color of the
same scene in different images (Note that the color can still be dif-
ferent even if the images are captured at the same time due to the
exposure of the camera).

Using the “NUS Wall” scene, we first evaluate how our method
performs when the video undergoes different kinds of motions. We
tested three camera motions: forward translation, sideway transla-
tion and pure rotation. Figure 9 shows the qualitative results under
the respective camera motions. Since the scene is densely covered
by still photos, our algorithm generates high quality results for all
the sequences. Even with translational motions and the relatively
near scene points, the homography assumption (between Ic−1 and
Ic) works well. More results can be seen from the supplementary
video.

We then apply our algorithm to the unconstrained “Merlion”
scene. Figure 10 shows the results of 3 video sequences. The
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Figure 9: Diminished reality results under different kinds of motions. Under each motion, the left is the original frame, and the right is the
corresponding diminished reality result. The first, middle and last frames of the videos are shown here.

Merlion 1 Merlion 2 Merlion 3

Figure 10: Diminished reality results of “Merlion” scene. Under each video, the left is the original frame, and the right is the corresponding
diminished reality result. The first, middle and last frames of the videos are shown here.

first two sequences mainly contain camera rotations, with the view-
points well-covered by the online photos, so our method produces
high quality diminished reality results. In contrast, the last video
consists of translations traversing over larger area, with some views
not well covered by the online photos; thus the composite result
show artifacts when the camera passes by a position not well cov-
ered. See video results in the supplementary video.

To evaluate the performance of our system on a less well-covered
scene, we apply our algorithm to the ”Fullerton Hotel” scene (Fig-
ure 2(c)). This scene contains only 36 photos, with the camera po-
sitions mainly restricted to some popular vantage points. We show
some qualitative result in Figure 11. While the result is generally
good and consistent, it does suffer from slight mis-alignment in
some frames due to the sparse and uneven coverage of the scene.
This slight loss of quality notwithstanding, the results do demon-
strate the potential of internet photos even for less well-known lo-
cations.

To further illustrate the superiority of the proposed diminished
reality framework, we compare our results on the “Merlion” and
“Mount Rushmore” scenes with those of Criminisi et al. [5] and
the commercial PatchMatch [3] in Adobe Photoshop CS5. In our
method, the 3D structure of the “Mount Rushmore” scene is recon-
structed using 318 photos. For the current view in which object

removal is desired, we use one of the photos from the photo col-
lections; this conveniently provides us with the camera intrinsic pa-
rameters. Note that this does not necessarily mean that the current
view has near neighbors; indeed, in the “Mount Rushmore” scene,
the nearest neighbor is several meters away. The unwanted objects
in the current view are outlined in a bounding box for our algo-
rithm, while tighter boundaries are provided as an image mask for
the other two algorithms. The image completion results are shown
in Figure 12. The first row in Figure 12 shows an image taken from
the “Merlion” scene and the man in red is what we want to remove
in the image. This task is difficult, because this man is standing
in front of the railing, which poses problem to most patched-based
methods. Here, both [5] and PatchMatch are not structure-aware
and thus fail to recover the correct patches. Moreover, the small
white house in the distance is almost totally obliterated, while our
method restores the exact background using information from other
close photos. One little artifact of our method is the reflection of the
man on the wet ground, but that is because this region is not outlined
by the user. The second row highlights another strength of our al-
gorithm. A large stone beam is selected and removed in the “Mount
Rushmore” scene. It is very difficult for [5] and Patchmatch to find
even visually plausible recoveries, not to mention authentic ones,
whereas our approach fills in correctly what is behind the beam.



Figure 11: Diminished reality results of “Fullerton Hotel” scene. The first, middle and last frames of the videos before and after the couple
removal are shown here.

Figure 12: Comparison of our image completion results with those of Criminisi and PatchMatch. From left to right: original images and tracked
bounding box used in our approach, image masks used in the other two methods, results of PatchMatch, results of Criminisi, and our results.
We recommend that these images be viewed on-screen and zoomed in.

This experiment also shows that our algorithm tolerates displace-
ments in the positions of the nearby cameras to some extent, pro-
vided that the visible point sets are relatively far away compared to
the baseline of these cameras.

7 LIMITATIONS

It should be pointed out that this system framework is mainly ap-
plicable to tourist snapshots of frequently visited landmarks, which
have many pictures taken and available on the Internet. For some
view points less well captured, the visual result may degrade. For
non-public places, we are afraid it is out of the scope of this pa-
per. Nevertheless, in this case, the user may capture some photos in
advance and our method can still be applied.

Although the fixed bounding box of the tracker used [37] offers
the advantage of speeding up the MVC blending, it also raises an
issue; our approach is not suitable for removing unwanted objects
which increase in size, e.g., if a person is walking closer to the
camera, he may eventually exceed the bounding box, thus leading
to failure in replacing the region outside the box.

Another limitation is that our approach mainly focuses on re-
moving objects whose occluding background is visible in at least
one Internet picture. One example of conflict would be a statue
which is very near to a wall. In this case, the wall cannot been
”seen” by any other views, so no satisfying patch can be synthe-
sized for the wall. However, it does not mean that we cannot handle
static occluding object, e.g., if the background is far enough from
the occluding object, it can still be captured from some other views
and thus available for patch synthesis (See the result in Figure 12
below).

8 CONCLUSION

We have presented a system level framework for DR using prepared
structure information and registered photos in the reconstructed 3D
space. These data can be collected, captured and provided by 3D
map services. The essence of this proposed work lies in how to
organize and utilize the copious amount of photo collections on the
Internet. Based on a GPS prior, we can localize the user quickly.

From this location information and the pre-processed online photo
collections, we then choose nearby images to restore the unseen
background.

In this paper, we demonstrate the potential of large collections
of data on the Internet. We envisage more applications in the future
based on a similar framework, such as super-resolution, see-through
effect, re-rendering assuming different lighting condition, weather,
season, etc. Moreover, we need not restrict ourselves to just photo
resources, but also take advantages of audio, texts and videos.
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